South East Asian J. of Mathematics and Mathematical Sciences Vol. 15, No. 1 (2019), pp. 15-24.

ISSN (Print): 0972-7752

ON $(p,q)^{th}$ GOL'DBERG ORDER AND $(p,q)^{th}$ GOL'DBERG TYPE OF AN ENTIRE FUNCTION OF SEVERAL COMPLEX VARIABLES REPRESENTED BY MULTIPLE DIRICHLET SERIES

Dibyendu Banerjee and Simul Sarkar

Department of Mathematics Visva-Bharati, Santiniketan-731235, West Bengal, INDIA.

E-mail: dibyendu192@rediffmail.com, simulsarkar0101@gmail.com

(Received: November 26, 2018)

Abstract: Introducing the idea of $(p,q)^{th}$ Gol'dberg order and $(p,q)^{th}$ Gol'dberg type of an entire function f of several complex variables in a domain D we generalise some earlier results.

Keywords and Phrases: Entire function, Multiple Dirichlet series, Gol'dberg order, Gol'dberg type.

2010 Mathematics Subject Classification: 32A15.

1. Introduction

In this paper we denote complex and real n-space by \mathbb{C}^n and \mathbb{R}^n respectively. We write the elements $(s_1, s_2, ..., s_n)$, $(Re \ s_1, Re \ s_2, ..., Re \ s_n)$, $(\sigma_1, \sigma_2, ..., \sigma_n)$, $(m_1, m_2, ..., m_n)$ etc. of \mathbb{C}^n by their corresponding unsuffixed symbols s, $Re \ s$, σ , m etc. respectively.

For $x, y \in \mathbb{C}^n$, we define $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n), xy = (x_1y_1, x_2y_2, ..., x_ny_n), ||x|| = x_1 + x_2 + ... + x_n, x + r = (x_1 + r, x_2 + r, ..., x_n + r)$ for $r \in \mathbb{R}$. By I^n we shall mean the Cartesian product of n copies of I where I is the set of non-negative integers. For $k \in I$, \bar{k} will denote the real n-tuple (k, k, ..., k). For an entire function f with domain \mathbb{C}^n , f^k will denote the function $\frac{\partial^{||k||}f}{\partial_{s_1}^{k_1}...\partial_{s_n}^{k_n}}$, where $k \in I^n$ and $f^{(\bar{0})} = f$. Consider the multiple Dirichlet series

$$f(s_1, s_2, \dots, s_n) = \sum_{m_1, m_2, \dots, m_n=1}^{\infty} a_{m_1, m_2, \dots, m_n} exp(s_1\lambda_{1m_1} + s_2\lambda_{2m_2} + \dots + s_n\lambda_{nm_n})$$